How Can Biotechnology Enable Sustainable Growth Of The Human

How Can Biotechnology Enable Sustainable Growth Of The Human

 

Introduction

As the name suggests, biotechnology is technology that is based on biology. It utilises cellular and biomolecular procedures to develop products and methods which can be used to enhance business processes and improve our quality of life as well as the health of the environment (Bio, 2020). Mankind’s use of these biological processes are by no means a novel occurrence as we have utilised them for thousands of years to preserve food and produce food products such as cheese, bread, wine and to domesticate plants (Science Learning Hub, 2010).

Today the global economy is faced with a vast number of societal challenges, most of which stem from our aggressively growing population which we have to feed and keep healthy; the insidious consequences of climate change and our huge over-reliance on non-renewable resources which are completely unsustainable (Vanderhoven & Corbett, 2017). So essentially the three key issues which biotechnology can help solve are:

  • Feeding our growing population
  • Tackling disease
  • Reducing environmental damage (Nee & DaCunha, 2016)

The production of most consumer products, materials, chemicals and energy (including transport, heat and electricity), are hugely reliant on oil, coal, rare metals and natural gas. Even though these materials have been an important driver of the industrial revolution, the consequences over their over-exploitation are proving very problematic (Ritchie & Roser, 2017). The extraction process from the earth involves intensive procedures which are harmful to the environment. Not only can these procedures be damaging at their point of extraction but also during the hazardous transportation of these materials to their production hubs (Vanderhoven & Corbett, 2017). Traditional manufacturing processes are damaging to the environment because they demand very high amounts of energy through their fabrication and transportation which also results in the emission of greenhouse gases. They are also responsible for the by-product of toxic chemicals which affect the surround air, water and soil quality and harmful waste materials due to an inefficient use of materials, for example CNC milling can generate as much as 95% waste. In addition, the final products themselves are often inefficiently designed which results in them generating their own waste and pollution when they are used (3DEO, 2018). Not only that, but many products once they have reached expiry are not easily recycled and take a very long time to decompose and therefore have a damaging persistence in nature as well as high toxicity (Vanderhoven & Corbett, 2017). Plastic is one of the key culprits of such damage with many plastic based items taking up to 1000 years to decompose (LeBlanc, 2019).

How biotechnology can provide solutions

1. Feeding the growing population:

According to the World Bank, it is forecasted that we will need to increase our quantity of food production by another 50% by 2020 and global malnutrition, even though falling, is still a large problem (see figure 1). This is even more problematic if you consider the fact that climate change may reduce productivity by 25% and less than 5% of the populations’ of developed countries work in agriculture (Nee & DaCunha, Four problems that biotechnology can help solve, 2016). Biotechnology is already a large part of food manufacturing with the use of enzymes and fermentation. However this can be taken a step further as new biotechnologies can now facilitate the selection of desirable agronomic-efficient traits of various plants and the transference of these traits to a transgenic plant thereby increasing its viability and overall yield (Borgen, 2018).

Selective breeding is also proving very useful. Molecular markers make it possible for plants with favourable genes to be chosen for agriculture which results in crops that are more resistant to disease and harsh environmental condition and therefore provide a higher quality and yield (Borgen, 2018). The yield of high value chemicals such as pharmaceutical ingredients, fragrences, food flavourings and sweeteners, as well as the environmental impact of their production can also be improved through biotechnology (Vanderhoven & Corbett, 2017). Grapefruit flavouring is a great example of this since it is a flavouring which is in very high demand but short supply and its traditional synthetic method of production using orange oil requires large amounts of energy and produces toxic by-products (BBSRC, 2018). Oxford Biotrans is a company that ‘specialises in enzmatic process technologies that yield high value chemical compounds’. They produce natural-grade nootkatone, (which has the flavour and scent of grapfruit), through the environmentally friendly process of biotransformation of natural valencence. The prodcut

Order a similar paper

Get the results you need